МОДЕЛИ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА ДЛЯ ПРОГНОЗИРОВАНИЯ СЕРДЕЧНО-СОСУДИСТЫХ ЗАБОЛЕВАНИЙ У ЛЮДЕЙ С САХАРНЫМ ДИАБЕТОМ 2 ТИПА: АНАЛИТИЧЕСКИЙ ОБЗОР

Авторы

  • Адылова Фатима Туйчиевна
  • Тригулова Раиса Хусаиновна
  • Давронов Рифкат Рахимович

Ключевые слова:

сердечно-сосудистые заболевания, сахарный диабет, прогноз, машинное обучение, искусственный интеллект

Аннотация

Сердечно-сосудистые заболевания (ССЗ)  одна из самых частых причин смертности на планете, и раннее прогнозирование развития их осложнений одна из самых сложных задач медицины в последние годы. В настоящее время предлагается прогнозирование ССЗ с использованием различных алгоритмов машинного обучения, таких как логистическая регрессия, наивный байесовский метод, машина опорных векторов, случайный лес, экстремальный градиент и т. д. С помощью этих методов предсказать вероятность развития ССЗ и их осложнений.

В представленном обзоре выполненном по правилам метаанализа PRISMA описываются  модели ИИ для прогнозирования ССЗ у взрослых с СД 2, которые проведены на когортах взрослых больных с СД 2, с предсказанием риска развития ССЗ у пациентов с СД 2 (в течение определенного периода времени) и разработкой модели  искусственного интеллекта (модели машинного обучения или глубокого обучения). 

Библиографические ссылки

Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc Diabetol 2018;17(1). https://doi.org/10.1186/ s12933-018-0728-6.

Rawshani A, Rawshani A, Franz´en S, Sattar N, Eliasson B, Svensson A-M, Zethelius B, Miftaraj M, Mcguire DK, Rosengren A, Gudbj¨ornsdottir S. Risk factors, mortality, and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 2018;379(7):633–44. https://doi.org/10.1056/nejmoa1800256.

Rawshani A, Rawshani A, Franz´en S, Eliasson B, Svensson A-M, Miftaraj M, Mcguire DK, Sattar N, Rosengren A, Gudbj¨ornsdottir S. Mortality and cardiovascular disease in type 1 and type 2 diabetes. N Engl J Med 2017;376(15): 1407–18. https://doi.org/10.1056/nejmoa1608664.

Larsson SC, Wallin A, Håkansson N, Stackelberg O, B¨ack M, Wolk A. Type 1 and type 2 diabetes mellitus and incidence of seven cardiovascular diseases. Int J Cardiol 2018;262:66–70. https://doi.org/10.1016/j.ijcard.2018.03.099

Cheng Xu Ma et all1Cardiovascular disease in type 2 diabetes mellitus: progress toward personalized management Cardiovascular Diabetology (2022) 21:74 https://doi.org/10.1186/s12933-022-01516-6

Federation ID. Diabetes and cardiovascular disease. Brussels: International Diabetes Federation; 2016.

Mosenzon O, Alguwaihes A, Leon JLA, Bayram F, Darmon P, Davis TME, Dieuzeide G, Eriksen KT, Hong T, Kaltoft MS, et al. CAPTURE: a multinational, cross-sectional study of cardiovascular disease prevalence in adults with type 2 diabetes across 13 countries. Cardiovasc Diabetol.2021;20(1):154.

Artime E, Romera I, Diaz-Cerezo S, Delgado E. Epidemiology and economic burden of cardiovascular disease in patients with type 2 diabetes mellitus in spain: a systematic review. Diabetes Ther. 2021;12(6):1631–59.

Tesfaye A, Josef H, Wube TB, Girma Z, Negasa B, Muche T, Zewude B. Magnitude of, and factors associated with cardiovascular disease among type two diabetes mellitus patients. DMSO. 2020;13:4123–9.

Rawshani A, Rawshani A, Franzen S, Eliasson B, Svensson AM, Miftaraj M, McGuire DK, Sattar N, Rosengren A, Gudbjornsdottir S. Mortality and cardiovascular disease in type 1 and type 2 diabetes. N Engl J Med. 2017;376(15):1407–18.

Park JH, Ha KH, Kim BY, Lee JH, Kim DJ. Trends in cardiovascular complications and mortality among patients with diabetes in South Korea. Diabetes Metab J. 2021;45(1):120–4.

Oo MM, et al. Observational study investigating the prevalence of asymptomatic stage B heart failure in patients with type 2 diabetes who are not known to have coronary artery disease. BMJ Open. 2021;11(1): e039869.

Echouffo-Tcheugui JB, Zhang S, Florido R, Hamo C, Pankow JS, Michos ED, Goldberg RB, Nambi V, Gerstenblith G, Post WS, et al. Duration of diabetes and incident heart failure: the ARIC (Atherosclerosis Risk In Communities) study. JACC Heart failure. 2021;9(8):594–603.

Goodall R, Alazawi A, Hughes W, Bravis V, Salciccioli JD, Marshall DC,Crowley C, Shalhoub J. Trends in type 2 diabetes mellitus disease burden in European Union countries between 1990 and 2019. Sci Rep.2021;11(1):15356–15356.

Gregg EW, Cheng YJ, Srinivasan M, Lin J, Geiss LS, Albright AL, Imperatore G. Trends in cause-specific mortality among adults with and without diagnosed diabetes in the USA: an epidemiological analysis of linked national survey and vital statistics data. Lancet (London, England). 2018;391(10138):2430–40.

Luo L-J, Wang D-D, Wang J, Yang F, Tang J-H. Diverse roles of miR-335 in development and progression of cancers. Tumor Biol. 2016. https://doi.org/10.1007/s13277-016-5385-3

van Dieren S, Beulens JW, Kengne AP, Peelen LM, Rutten GE, Woodward M, van der Schouw YT, Moons KG. Prediction models for the risk of cardiovascular disease in patients with type 2 diabetes: a systematic review. Heart 2012;98(5):360–9. https://doi.org/10.1136/heartjnl-2011-300734.

Galbete A, Tamayo I, Librero J, Enguita-Germ´an M, Cambra K, Ib´a˜nez-Beroiz B. Cardiovascular risk in patients with type 2 diabetes: a systematic review of prediction models. Diabetes Res Clin Pract 2021:109089. https://doi.org/10.1016/j.diabres.2021.109089.

Read SH, van Diepen M, Colhoun HM, Halbesma N, Lindsay RS, McKnight JA, McAllister DA, Pearson ER, Petrie JR, Philip S, Sattar N, Woodward M, Wild SH, Scottish Diabetes Research Network Epidemiology G. Performance of cardiovascular disease risk scores in people diagnosed with type 2 diabetes: external validation using data from the national scottish diabetes register. Diabetes Care 2018;41(9):2010–8. https://doi.org/10.2337/dc18-0578

Dziopa K, Asselbergs FW, Gratton J, Chaturvedi N, Schmidt AF. Cardiovascular risk prediction in type 2 diabetes: a comparison of 22 risk scores in primary care settings. Diabetologia 2022. https://doi.org/10.1007/s00125-021-05640-y

Minhong Wang , Farah Francis, Holger Kunz , Xiang Zhang , Cheng Wan , Yun Liu , Paul Taylor, Sarah H. Wild , Honghan Wu Artificial intelligence models for predicting cardiovascular diseases in people with type 2 diabetes: A systematic review https://doi.org/10.1016/j.ibmed.2022.100072

Aminian A, Zajichek A, Arterburn DE, Wolski KE, Brethauer SA, Schauer PR, Nissen SE, Kattan MW. Predicting 10-year risk of end-organ complications of type 2 diabetes with and without metabolic surgery: a machine learning approach. Diabetes Care 2020;43(4):852–9. https://doi.org/10.2337/dc19-2057

Athanasiou M, Sfrintzeri K, Zarkogianni K, Thanopoulou AC, Nikita KS. An explainable XGBoost–based approach towards assessing the risk of cardiovascular disease in patients with Type 2 Diabetes Mellitus. 2020-10-01. In: 2020 IEEE 20th international conference on bioinformatics and bioengineering (BIBE); 2020.

Dworzynski P, Aasbrenn M, Rostgaard K, Melbye M, Gerds TA, Hjalgrim H, Pers TH. Nationwide prediction of type 2 diabetes comorbidities. Sci Rep 2020;10 (1). https://doi.org/10.1038/s41598-020-58601-7.

Segar MW, Vaduganathan M, Patel KV, Mcguire DK, Butler J, Fonarow GC, Basit M, Kannan V, Grodin JL, Everett B, Willett D, Berry J, Pandey A. Machine learning to predict the risk of incident heart failure hospitalization among patients with diabetes: the WATCH-DM risk score. Diabetes Care 2019;42(12):2298–306. https://doi.org/10.2337/dc19-0587.

Zarkogianni K, Athanasiou M, Thanopoulou AC, Nikita KS. Comparison of machine learning approaches toward assessing the risk of developing cardiovascular disease as a long-term diabetes complication. IEEE J Biomed Health Inf 2018;22(5): 1637–47. https://doi.org/10.1109/jbhi.2017.2765639.

Загрузки

Опубликован

2024-08-13