ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ И ЕГО РОЛЬ В УЛУЧШЕНИИ ДИАГНОСТИКИ КАРДИОЛОГИЧЕСКИХ СОСТОЯНИЙ
Ключевые слова:
Искусственный интеллект, Кардиология, Диагностика, Персонализированное лечениеАннотация
На фоне быстрого развития искусственного интеллекта (ИИ) в медицине, его применение в кардиологии становится все более значимым. Данная статья обсуждает роль и влияние искусственного интеллекта на улучшение диагностики кардиологических состояний. Подробно рассматриваются методы машинного обучения и нейронные сети, применяемые для анализа различных типов медицинских данных, включая электрокардиографию (ЭКГ), коронарная ангиография (КАГ), и другие. Преимущества использования искусственного интеллекта включают повышенную точность и скорость диагностики, раннее обнаружение патологий, а также персонализированный подход к лечению. Обсуждаются перспективы дальнейшего развития данной области и возможности интеграции искусственного интеллекта в клиническую практику с целью улучшения здравоохранения и результатов лечения пациентов с сердечно-сосудистыми заболеваниями.
Библиографические ссылки
Аляви А. Л., Аляви Б. А., Абдуллаев А. Х., Узоков Ж. К. Перспективы искусственного интеллекта в медицине // Journal of cardiorespiratory research, 2022, 1(4), 9-14.
Uzokov J, Alyavi A, Alyavi B, Abdullaev A. How artificial intelligence can assist with ischaemic heart disease // Eur Heart J. 2024 Feb 10:ehae030. doi: 10.1093/eurheartj/ehae030.
LeCun Y., Bengio Y., Hinton G. Deep learning. Nature. 2015;521:436–444.
Rajpurkar P., Chen E., Banerjee O., Topol E.J. AI in health and medicine. Nat. Med. 2022;28:31–38.
Alyavi A., Uzokov J. Treatment of stable angina pectoris: focus on the role of calcium antagonists and ACE inhibitors //Ont Health Technol Assess Ser. – 2017. – Т. 15. – №. 9. – С. 1-12.
Brown K, Jones C. Machine Learning Approaches for Cardiac Diagnosis: A Comprehensive Review. European Heart Journal. 2017;38(14):1094-1100.
Bengio Y., Goodfellow I., Courville A. Deep learning. Volume 1 MIT Press; Cambridge, MA, USA: 2017.
Vasilakakis M.D., Iakovidis D.K., Koulaouzidis G. Public Health and Informatics. IOS Press; Amsterdam, The Netherlands: 2021. A Constructive Fuzzy Representation Model for Heart Data Classification; pp. 13–17.
Zhang J., Gajjala S., Agrawal P., Tison G.H., Hallock L.A., Beussink-Nelson L., Lassen M.H., Fan E., Aras M.A., Jordan C., et al. Fully Automated Echocardiogram Interpretation in Clinical Practice. Circulation. 2018;138:1623–1635.
Wolterink J.M., Leiner T., de Vos B.D., van Hamersvelt R.W., Viergever M.A., Išgum I. Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks. Med. Image Anal. 2016;34:123–136.
Cano-Espinosa C., Gonzalez G., Washko G.R., Cazorla M., Estepar R.S.J. Automated Agatston score computation in non-ECG gated CT scans using deep learning. Proc. SPIE Int. Soc. Opt. Eng. 2018;10574:673–678.
Playford D., Bordin E., Mohamad R., Stewart S., Strange G. Enhanced Diagnosis of Severe Aortic Stenosis Using Artificial Intelligence: A Proof-of-Concept Study of 530,871 Echocardiograms. JACC Cardiovasc. Imaging. 2020;13:1087–1090.
Gaur S., Øvrehus K.A., Dey D., Leipsic J., Bøtker H.E., Jensen J.M., Narula J., Ahmadi A., Achenbach S., Ko B.S., et al. Coronary plaque quantification and fractional flow reserve by coronary computed tomography angiography identify ischemia-causing lesions. Eur. Heart J. 2016;37:1220–1227.
Zhang L., Gooya A., Dong B., Hua R., Petersen S.E., Medrano-Gracia P., Frangi A.F. In: Simulation and Synthesis in Medical Imaging. Tsaftaris S.A., Gooya A., Frangi A.F., Prince J.L., editors. Springer; Berlin/Heidelberg, Germany: 2016. pp. 138–145.
Uzokov J. Influence of abnormal lipid components in statin-naive young adults: Is there any gap? //European journal of preventive cardiology. – 2020. – Т. 27. – №. 8. – С. 868-869.
Tarroni G., Oktay O., Bai W., Schuh A., Suzuki H., Passerat-Palmbach J., De Marvao A., O’Regan D.P., Cook S., Glocker B., et al. Learning-based quality control for cardiac MR images. IEEE Trans. Med. Imaging. 2019;38:1127–1138.
Tan L.K., McLaughlin R.A., Lim E., Abdul Aziz Y.F., Liew Y.M. Fully automated segmentation of the left ventricle in cine cardiac MRI using neural network regression. J. Magn. Reson. Imaging. 2018;48:140–152.
Iskhakov S., Uzokov J., Kamilova S. Comparative analysis of the inflammatory biomarkers in patients with stable coronary artery disease and metabolic syndrome //Atherosclerosis. – 2019. – Т. 287. – С. e171.
Lutfullayevich A. A. et al. GW28-e0699 Cardiovascular risk stratification and gender differences in hypertensive patients with metabolic syndrome //Journal of the American College of Cardiology. – 2017. – Т. 70. – №. 16S. – С. C138-C139.
Fahmy A.S., Rausch J., Neisius U., Chan R.H., Maron M.S., Appelbaum E., Menze B., Nezafat R. Automated cardiac MR scar quantification in hypertrophic cardiomyopathy using deep convolutional neural networks. JACC Cardiovasc. Imaging. 2018;11:1917–1918.
Sanchez-Martinez S., Duchateau N., Erdei T., Kunszt G., Aakhus S., Degiovanni A., Marino P., Carluccio E., Piella G., Fraser A.G., et al. Machine Learning Analysis of Left Ventricular Function to Characterize Heart Failure with Preserved Ejection Fraction. Circ. Cardiovasc. Imaging. 2018;11:e007138.
Uzokov J., Alyavi A., Alyavi B. Influence of combination therapy of rosuvastatin and telmisartan on vascular and metabolic profile in hypercholesterolemic patients with metabolic syndrome //Atherosclerosis. – 2017. – Т. 263. – С. e241.
Matić I. et al. A Survey on Cardiovascular Nursing Occupational Standard: Meeting the Needs of Employers //Policy, Politics, & Nursing Practice. – 2021. – Т. 22. – №. 1. – С. 73-79.
Koulaouzidis G., Iakovidis D.K., Clark A.L. Telemonitoring predicts in advance heart failure admissions. Int. J. Cardiol. 2016;216:78–84.
Siontis K.C., Liu K., Bos J.M., Attia Z.I., Cohen-Shelly M., Arruda-Olson A.M., Farahani N.Z., Friedman P.A., Noseworthy P.A., Ackerman M.J. Detection of hypertrophic cardiomyopathy by an artificial intelligence electrocardiogram in children and adolescents. Int. J. Cardiol. 2021;340:42–47.
Jadczyk T., Kiwic O., Khandwalla R.M., Grabowski K., Rudawski S., Magaczewski P., Benyahia H., Wojakowski W., Henry T.D. Feasibility of a voice-enabled automated platform for medical data collection: CardioCube. Int. J. Med. Inform. 2019;129:388–393.
Alyavi A. L. et al. Features of Inflammatory Markers in Patients With Coronary Heart Disease //International Journal of Healthcare and Medical Sciences. – 2018. – Т. 4. – №. 10. – С. 188-192.
Alyavi A. L. et al. Predictors of contrast induced nephropathy in patients with metabolic syndrome //European heart journal. – GREAT CLARENDON ST, OXFORD OX2 6DP, ENGLAND : OXFORD UNIV PRESS, 2017. – Т. 38. – С. 1283-1283.
Jensen H.K., Brabrand M., Vinholt P.J., Hallas J., Lassen A.T. Hypokalemia in acute medical patients: Risk factors and prognosis. Am. J. Med. 2015;128:60–67.
Lin C.S., Lin C., Fang W.H., Hsu C.J., Chen S.J., Huang K.H., Lin W.S., Tsai C.S., Kuo C.C., Chau T. A Deep-Learning Algorithm (ECG12Net) for Detecting Hypokalemia and Hyperkalemia by Electrocardiography: Algorithm Development. JMIR Med. Inform. 2020;8:e15931.
Okosieme O.E., Taylor P.N., Evans C., Thayer D., Chai A., Khan I., Draman M.S., Tennant B., Geen J., Sayers A., et al. Primary therapy of Graves’ disease and cardiovascular morbidity and mortality: A linked-record cohort study. Lancet Diabetes Endocrinol. 2019;7:278–287.
Alyavi A. et al. Influence of Diet with Low Glycemic Index on Lipid Spectrum in Patients with Ischemic Disease of the Heart //Atherosclerosis Supplements. – 2018. – Т. 32. – С. 158.
Alyavi A. et al. Tumor necrosis factor-α and interleukin-6 gene distribution in patients with coronary heart disease //Arterial hypertension. – 2020. – Т. 45. – №. 84. – С. 9.
Du X., Zhang W., Zhang H., Chen J., Zhang Y., Warrington J.C., Brahm G., Li S. Deep regression segmentation for cardiac bi-ventricle MR images. IEEE Access. 2018;6:3828–3838.
Mirzaev R. Z., Akbarovna N. Z., Shazeb A. M. Clinical and Genetic Features of Unstable Angina Pectoris Depending on Various Psychosocial Risk Factors //International Journal of Alternative and Contemporary Therapy. – 2024. – Т. 2. – №. 4. – С. 4-8.
Alyavi B., Uzokov J. Peripheral artery disease in the lower extremities: indications for treatment //E-journal of Cardiology Practice. – 2018. – Т. 16. – №. 9. – С. 1-10.
Inan O.T., Baran Pouyan M., Javaid A.Q., Dowling S., Etemadi M., Dorier A., Heller J.A., Bicen A.O., Roy S., De Marco T., et al. Novel Wearable Seismocardiography and Machine Learning Algorithms Can Assess Clinical Status of Heart Failure Patients. Circ. Heart Fail. 2018;11:e004313.
Payziev D. et al. P1003 New onset atrial fibrillation after stenting of the right coronary artery in patients with ischemic disease of the heart //EP Europace. – 2020. – Т. 22. – №. Supplement_1. – С. euaa162. 338.
Ebrahimzadeh E., Kalantari M., Joulani M., Shahraki R.S., Fayaz F., Ahmadi F. Prediction of paroxysmal Atrial Fibrillation: A machine learning based approach using combined feature vector and mixture of expert classification on HRV signal. Comput. Methods Programs Biomed. 2018;165:53–67.
Лаханов А., Ташкенбаева Э., Насырова З. ХАРАКТЕРИСТИКА ПОРАЖЕНИЯ КОРОНАРНЫХ АРТЕРИЙ У БОЛЬНЫХ ОСТРЫМ ИНФАРКТОМ МИОКАРДА С ФИБРИЛЛЯЦИЕЙ ПРЕДСЕРДИЙ //Сборник научных трудов «SCIENTIA». – 2023. – №. 13 октября 2023 г.; Вильнюс, Литва. – С. 71-72.