СРАВНИТЕЛЬНАЯ ОЦЕНКА ПРОГНОЗИРОВАНИЯ РИСКА СЕРДЕЧНО-СОСУДИСТЫХ ЗАБОЛЕВАНИЙ У ЛЮДЕЙ С САХАРНЫМ ДИАБЕТОМ 2 ТИПА: ПОКАЗАТЕЛИ, ГЕОГРАФИЯ, МОДЕЛИ ИСКУСТВЕННОГО ИНТЕЛЛЕКТА

Авторы

  • Адылова Фатима Туйчиевна
  • Тригулова Раиса Хусаиновна
  • Давронов Рифкат Рахимович

Ключевые слова:

сердечно-сосудистые заболевания, сахарный диабет, прогноз, машинное обучение, искусственный интеллект

Аннотация

     Сахарный диабет 2 типа (СД 2) является распространенным хроническим заболеванием, причиной которого является нарушение выделения инсулина. Из-за осложнений СД 2, исходы этого заболевания приводят к тяжелым сердечно-сосудистым заболеваниям (ССЗ). Сегодня, учитывая постоянное увеличение числа пациентов с СД, необходимо найти новые инструменты для выявления пациентов с высоким риском сердечно-сосудистых осложнений. В этом процессе есть два ключевых момента: набор показателей и математические модели прогнозирования. Поэтому статья дает ответы на три вопроса: 1. Есть ли существенная разница в наборах признаков из разных исследованиях (цель, география, этнос)? 2. Есть ли необходимость создавать собственные наборы признаков, а не использовать известные прогнозные индикаторы? 3. Есть ли эффект    применения методов глубокого обучения в сравнении с традиционными методами (статистика и машинное обучение)?  Ответы на эти вопросы основаны на анализе обширных новейших   публикаций по исследуемой проблеме.

Библиографические ссылки

Адылова ФТ,Тригулова Р.Х.,Давронов Р. Р. Модели искусственного интеллекта для прогнозирования сердечно-сосудистых заболеваний у людей с сахарным диабетом 2 типа: аналитический обзор. Журнал кардиореспираторных исследований Том 5 № 2 (2024), стр.33-40)

Athanasiou M, Sfrintzeri K, Zarkogianni K, Thanopoulou AC, Nikita KS. An explainable XGBoost–based approach towards assessing the risk of cardiovascular disease in patients with Type 2 Diabetes Mellitus. 2020-10-01. In: 2020 IEEE 20th international conference on bioinformatics and bioengineering (BIBE); 2020.)

Dworzynski P, Aasbrenn M, Rostgaard K, Melbye M, Gerds TA, Hjalgrim H, Pers TH. Nationwide prediction of type 2 diabetes comorbidities. Sci Rep 2020;10 (1). https://doi.org/10.1038/s41598-020-58601-7

Segar MW, Vaduganathan M, Patel KV, Mcguire DK, Butler J, Fonarow GC, Basit M, Kannan V, Grodin JL, Everett B, Willett D, Berry J, Pandey A. Machine learning to predict the risk of incident heart failure hospitalization among patients with diabetes: the WATCH-DM risk score. Diabetes Care 2019;42(12):2298–306. https://doi.org/10.2337/dc19-0587

Ginsberg HN. The ACCORD (Action to Control Cardiovascular Risk in Diabetes) Lipid trial: what we learn from subgroup analyses. Diabetes Care. 2011 May;34 Suppl 2(Suppl 2):S107-8. doi: 10.2337/dc11-s203. PMID: 21525439; PMCID: PMC3632145.

Einhorn PT, Davis BR, Massie BM, Cushman WC, Piller LB, Simpson LM, Levy D, Nwachuku CE, Black HR; ALLHAT Collaborative Research Group. The Antihypertensive and Lipid Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) Heart Failure Validation Study: diagnosis and prognosis. Am Heart J. 2007 Jan;153(1):42-53. doi: 10.1016/j.ahj.2006.10.012. PMID: 17174636.

Huang C, Murugiah K, Mahajan S, et al. Enhancing the prediction of acute kidney injury risk after percutaneous coronary intervention using machine learning techniques: a retrospective cohort study. PLoS Med 2018;15:e1002703;

Khan SS, Ning H, Shah SJ, et al. 10-year risk equations for incident heart failure in the general population. J Am Coll Cardiol 2019; 73:2388–2397.

Matthew W. Segar , Kershaw V. Patel, Anne S. Hellkamp ,Muthiah Vaduganathan, Yuliya Lokhnygina, et all Validation of the WATCH-DM and TRS-HFDM Risk Scores to Predict the Risk of Incident Hospitalization for Heart Failure Among Adults With Type 2 Diabetes: A Multicohort Analysis J Am Heart Assoc. 2022;11:e024094. DOI: 10.1161/JAHA.121.024094

M. Schmid, M.N. Wright, A. Ziegler On the use of Harrell’s C for clinical risk prediction via random survival forests Expert Syst. Appl., 63 (2016), pp. 450-459, 10.1016/j.eswa.2016.07.018

D'Agostino, Ralph B.; Belanger, Albert; D'Agostino, Ralph B. Jr. (1990). "A suggestion for using powerful and informative tests of normality" (PDF). The American Statistician. 44 (4): 316–321. doi:10.2307/2684359

Berg DD, Wiviott SD, Scirica BM, Gurmu Y, Mosenzon O, Murphy SA, Bhatt DL, Leiter LA, McGuire DK, Wilding JPH, et al. Heart failure risk stratification and efficacy of sodium-glucose cotransporter-2 inhibitors in patients with type 2 diabetes mellitus. Circulation. 2019;140:1569–1577.doi: 10.1161/CIRCU LATIO NAHA.119.042685

Elharram M, Ferreira JP, Huynh T, Ni J, Giannetti N, Verma S, Zannad F,Sharma A. Prediction of heart failure outcomes in patients with type 2 diabetes mellitus: validation of the Thrombolysis in Myocardial Infarction Risk Score for Heart Failure in Diabetes (TRS-HFDM ) in patients in the ACCORD trial. Diabetes Obes Metab. 2021;23:782–790

Honigberg MC, Patel RB, Pandey A, Fonarow GC, Butler J, McGuire DK, Vaduganathan M. Trends in hospitalizations for heart failure and ischemic heart disease among US adults with diabetes. JAMA Cardiol. 2021;6:354–357. doi: 10.1001/jamac ardio.2020.5921

Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, Himmelfarb CD, Khera A, Lloyd-Jones D, McEvoy JW, et al. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;140:e596–e646.

Echouffo-Tcheugui JB, Greene SJ, Papadimitriou L, Zannad F, Yancy CW, Gheorghiade M, Butler J. Population risk prediction models for incident heart failure: a systematic review. Circ Heart Fail. 2015;8:438–447. doi: 10.1161/CIRCH EARTF AILURE.114.001896

Khan SS, Ning H, Shah SJ, Yancy CW, Carnethon M, Berry JD, Mentz RJ, O’Brien E, Correa A, Suthahar N, et al. 10-year risk equations for incident heart failure in the general population. J Am Coll Cardiol. 2019;73:2388–2397.

Bavishi A, Bruce M, Ning H, Freaney PM, Glynn P, Ahmad FS, Yancy CW, Shah SJ, Allen NB, Vupputuri SX, et al. Predictive accuracy of heart failure-specific risk equations in an electronic health record-based cohort. Circ Heart Fail. 2020;13:e007462. doi: 10.1161/CIRCH EARTF AILURE.120.007462

Pandey A, Patel KV, Vongpatanasin W, Ayers C, Berry JD, Mentz RJ, Blaha MJ, McEvoy JW, Muntner P, Vaduganathan M, et al. Incorporation of biomarkers into risk assessment for allocation of antihypertensive medication according to the 2017 ACC/AHA high blood pressure guideline: a pooled cohort analysis. Circulation. 2019;140:2076–2088.doi:10.1161/CIRCU LATIO NAHA.119.043337

Pandey A, Vaduganathan M, Patel KV, Ayers C, Ballantyne CM, Kosiborod MN, Carnethon M, DeFilippi C, cGuire DK, Khan SS, et al. Biomarker-based risk prediction of incident heart failure in pre-diabetes and diabetes. JACC Heart Fail. 2021;9(3):215–223.

Pandey A, Keshvani N, Ayers C, Correa A, Drazner MH, Lewis A, Rodriguez CJ, Hall ME, Fox ER, Mentz RJ, et al. Association of cardiac injury and malignant left ventricular hypertrophy with risk of heart failure in African Americans: the Jackson Heart Study. JAMA Cardiol. 2019;4:51–58. doi: 10.1001/jamac ardio.2018.4300

Pandey A, Cornwell WK III, Willis B, Neeland IJ, Gao A, Leonard D, DeFina L, Berry JD. Body mass index and cardiorespiratory fitness in mid-life and risk of heart failure hospitalization in older age: findings from the Cooper Center Longitudinal Study. JACC Heart Fail. 2017;5:367–374.

Pandey A, Kondamudi N, Patel KV, Ayers C, Simek S, Hall ME, Musani SK, Blackshear C, Mentz RJ, Khan H, et al. Association between regional adipose tissue distribution and risk of heart failure among blacks. Circ Heart Fail. 2018;11:e005629. doi: 10.1161/CIRCH EARTF AILURE.118.005629

Katsuomi Iwakura, Toshinari Onishi , Atsunori Okamura , Yasushi Koyama , NobuakiTanaka , Masato Okada, Kenshi Fujii, Masahiro Seo, TakahisaYamada, MasamichiYano, Takaharu Hayashi, YoshioYasumura , Yusuke Nakagawa , ShunsukeTamaki, Akito Nakagawa6, Yohei Sotomi, Shungo Hikoso, Daisaku Nakatani, Yasushi Sakata & PURSUIT-HFpEF Investigators The WATCH DM risk score estimates clinical outcomes in type 2 diabetic patients with heart failure with preserved ejection fraction Scientific Reports | (2024) 14:1746 | https://doi.org/10.1038/s41598-024-52101-8)

Suna, S. et al. Study protocol for the PURSUIT-HFpEF study: A prospective, multicenter, observational study of patients with heart failure with preserved ejection fraction. BMJ Open. 10, e038294 (2020).

Pocock, S. J. et al. Predicting survival in heart failure: A risk score based on 39 372 patients from 30 studies. Eur. Heart J. 34, 1404–1413 (2013).

Lupon, J. et al. Development of a novel heart failure risk tool: The Barcelona Bio-Heart Failure risk calculator (BCN Bio-HF calculator). PLoS ONE. 9, e85466 (2014).

Beyene, K. M. & El Ghouch, A. Time-dependent ROC curve estimation for interval-censored data. Biom J. 64, 1056–1074 (2022).

Zhang, X. et al. WATCH-DM risk score predicts the prognosis of diabetic phenotype patients with heart failure and preserved ejection fraction. Int. J. Cardiol. 385, 34–40 (2023).

Remmelzwaal, S. et al. Natriuretic peptides for the detection of diastolic dysfunction and heart failure with preserved ejection fraction—A systematic review and meta-analysis. BMC Med. 18, 290 (2020).

Jarolim, P., White, W. B., Cannon, C. P., Gao, Q. & Morrow, D. A. Serial measurement of natriuretic peptides and cardiovascular outcomes in patients with type 2 diabetes in the EXAMINE trial. Diabetes Care. 41, 1510–1515 (2018).

Segar, M. W. et al. Incorporation of natriuretic peptides with clinical risk scores to predict heart failure among individuals with dysglycaemia. Eur. J. Heart Fail. 24, 169–180 (2022).

Berg, D. D. et al. Heart failure risk stratification and efficacy of sodium-glucose cotransporter-2 inhibitors in patients with type 2 diabetes mellitus. Circulation. 140, 1569–1577 (2019).

Elharram, M. et al. Prediction of heart failure outcomes in patients with type 2 diabetes mellitus: Validation of the thrombolysis in myocardial infarction risk score for heart failure in diabetes (TRS-HFDM ) in patients in the ACCORD trial. Diabetes Obes. Metab. 23, 782–790 (2021).

Segar, M. W. et al. Validation of the WATCH-DM and TRS-HFDM risk scores to predict the risk of incident hospitalization for heart failure among adults with type 2 diabetes: A multicohort analysis. J. Am. Heart Assoc. 11, e024094 (2022).

Sang, H., Lee, H., Lee, M. et al. Prediction model for cardiovascular disease in patients with diabetes using machine learning derived and validated in two independent Korean cohorts. Sci Rep 14, 14966 (2024). https://doi.org/10.1038/s41598-024-63798-y

Ceriello, A. et al. HbA1c variability predicts cardiovascular complications in type 2 diabetes regardless of being at glycemic target.Cardiovasc. Diabetol. 21, 13. https:// doi. org/ 10. 1186/ s12933- 022- 01445-4 (2022).

Shen, Y. et al. Association between visit-to-visit HbA1c variability and the risk of cardiovascular disease in patients with type 2diabetes. Diabet. Obes. Metab. 23, 125–135. https:// doi. org/ 10. 1111/ dom. 14201 (2021).

Cho, E. J., Han, K., Lee, S. P., Shin, D. W. & Yu, S. J. Liver enzyme variability and risk of heart disease and mortality: A nationwide population-based study. Liver Int. 40, 1292–1302. https:// doi. org/ 10. 1111/ liv. 14432 (2020).

Wan, E. Y. F. et al. Greater variability in lipid measurements associated with cardiovascular disease and mortality: A 10-year diabetes cohort study. Diabet. Obes. Metab. 22, 1777–1788. https:// doi. org/ 10. 1111/ dom. 14093 (2020).

C. Selvarathi S. Varadhaganapathy Deep Learning Based Cardiovascular Disease Risk Factor Prediction Among Type 2 Diabetes Mellitus Patients Information Technology and Control Vol. 52 / No. 1 / 2023 pp. 215-227DOI 10.5755/j01.itc.52.1.32008.

Zarkogianni, K., Athanasiou, M., Thanopoulou, A. C. Comparison of Machine Learning Approaches Toward Assessing the Risk of Developing Cardiovascular Dis¬ease as a Long-term Diabetes Complication. Journal of Biomedical and Health Informatics, 2018, 22, 1637- 1647. https://doi.org/10.1109/JBHI.2017.2765639

Загрузки

Опубликован

2024-11-25