ОСОБЕННОСТИ НЕЙРОТРАНСМИТТЕРОВ И НЕЙРОГОРМОНОВ ПРИ ОСТРОМ ИШЕМИЧЕСКОМ ИНСУЛЬТЕ

Авторы

  • Хакимов Сардор Шукуржонович
  • Куранбаева Сатима Раззаковна

Ключевые слова:

ишемический инсульт, эксайтотоксичность, возбуждающий нейромедиатор, тормозной нейромедиатор, нейромодуляторы, нейрогормоны

Аннотация

Нейротрансмиттеры и нейрогормоны играют решающую роль в сложной патофизиологии неврологических расстройств, включая ишемический инсульт. В этом обзоре представлено всестороннее исследование ключевых нейротрансмиттеров — глутамата, ГАМК, дофамина и серотонина — и нейрогормонов — кортикотропин-рилизинг-фактора, окситоцина, пролактина и лептина — подчеркивая их отдельные и взаимосвязанные роли в модуляции нервной активности, воспалении, и нейропротекция. Глутамат и ГАМК исследуются на предмет их противоположного действия в отношении эксайтотоксичности и ингибирования передачи сигналов, тогда как дофамин и серотонин обсуждаются как факторы, влияющие на тяжесть ишемического инсульта. Нейрогормоны кортикотропин-рилизинг-фактор, окситоцин, пролактин и лептин оцениваются на предмет их вклада в нейропротекцию и воспаление. Объединяя текущие исследования, этот обзор стремится выяснить сложную роль этих сигнальных молекул при травме головного мозга и углубить наше понимание их участия в патогенезе ишемического инсульта.

Библиографические ссылки

F. Zhang, C. Li, R. Wang, D. Han, Q.-G. Zhang, C. Zhou, H.-M. Yu, G.-Y. Zhang, Activation of GABA receptors attenuates neuronal apoptosis through inhibiting the tyrosine phosphorylation of NR2A by Src after cerebral ischemia and reperfusion, Neuroscience, Volume 150, Issue 4, 2007, Pages 938-949, ISSN 0306-4522, https://doi.org/10.1016/j.neuroscience.2007.09.070.

Catherine Jackson-Friedman, Patrick D. Lyden, Sonia Nunez, Albert Jin, Richard Zweifler, High Dose Baclofen Is Neuroprotective but Also Causes Intracerebral Hemorrhage: A Quantal Bioassay Study Using the Intraluminal Suture Occlusion Method, Experimental Neurology, Volume 147, Issue 2, 1997, Pages 346-352, ISSN 0014-4886, https://doi.org/10.1006/exnr.1997.6637.

Hársing LG Jr, Gigler G, Albert M, Szénási G, Simó A, Móricz K, Varga A, Ling I, Bagdy E, Király I, Sólyom S, Jurányi Z. Neurotransmitter

release in experimental stroke models: the role of glutamate-GABA interaction. Adv Exp Med Biol. 2004;541:21-37. PMID: 14977206.

Yuan J . Neuroprotective strategies targeting apoptotic and necrotic cell death for stroke. Apoptosis Int J Program Cell Death 2009; 14: 469 77.

Simon RP, Griffiths T, Evans MC, Swan JH, Meldrum BS . Calcium overload in selectively vulnerable neurons of the hippocampus during and after ischemia: an electron microscopy study in the rat. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 1984; 4: 350–61.

Raghupathi R, Graham DI, McIntosh TK . Apoptosis after traumatic brain injury. J Neurotrauma 2000; 17: 927–38.

Blood FR, Oser BL, White PL, Olney JW . Monosodium glutamate. Science 1969; 165: 1028–9.

Rothman SM . Synaptic activity mediates death of hypoxic neurons. Science 1983; 220: 536–7.

Hardingham GE, Fukunaga Y, Bading H . Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 2002; 5: 405–14.

Gouix E, Léveillé F, Nicole O, Melon C, Had-Aissouni L, Buisson A . Reverse glial glutamate uptake triggers neuronal cell death through extrasynaptic NMDA receptor activation. Mol Cell Neurosci 2009; 40: 463–73.

Nelson RM, Green AR, Lambert DG, Hainsworth AH. On the regulation of ischemia‐induced glutamate efflux from rat cortex by GABA: in vitro studies with GABA, clomethiazole and pentobarbitone. British Journal of Pharmacology 2000;130(5):1124‐30.

Wilby MJ, Hutchinson PJ. The pharmacology of chlormethiazole: a potential neuroprotective agent?. CNS Drug Reviews 2004;10(4):281‐94.

Tuttolomondo A, Sciacca R, Raimondo D, Arnao V, Renda C, Pinto A, et al. Neuron protection as a therapeutic target in acute ischemic stroke. Current Topics in Medicinal Chemistry 2009;9(14):1317‐34.

Chi OZ, Hunter C, Liu X, Chi Y, Weiss HR. Effects of GABA(A) receptor blockade on regional cerebral blood flow and blood‐brain barrier disruption in focal cerebral ischemia. Journal of Neurological Sciences 2011;301((1‐2)):66‐70.

Klassman L. Therapeutic hypothermia in acute stroke. Journal of Neuroscience Nursing 2011;43(2):94‐103.

Salaudeen MA, Bello N, Danraka RN, Ammani ML. Understanding the Pathophysiology of Ischemic Stroke: The Basis of Current Therapies and Opportunity for New Ones. Biomolecules. 2024 Mar 4;14(3):305. doi: 10.3390/biom14030305. PMID: 38540725; PMCID: PMC10968326.

Ludhiadch A., Sharma R., Muriki A., Munshi A. Role of calcium homeostasis in ischemic stroke: A review. CNS Neurol. Disord.-Drug Targets Former. Curr. Drug Targets-CNS Neurol. Disord. 2022;21:52–61. doi: 10.2174/1871527320666210212141232.

Shaheryar Z.A., Khan M.A., Adnan C.S., Zaidi A.A., Hänggi D., Muhammad S. Neuroinflammatory triangle presenting novel pharmacological targets for ischemic brain injury. Front. Immunol. 2021;12:748663. doi: 10.3389/fimmu.2021.748663.

Vermot A., Petit-Härtlein I., Smith S.M., Fieschi F. NADPH oxidases (NOX): An overview from discovery, molecular mechanisms to

physiology and pathology. Antioxidants. 2021;10:890. doi: 10.3390/antiox10060890.

Vallet P., Charnay Y., Steger K., Ogier-Denis E., Kovari E., Herrmann F., Michel J.-P., Szanto I. Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia. Neuroscience. 2005;132:233–238. doi: 10.1016/j.neuroscience.2004.12.038.

Tuo Q.Z., Zhang S.T., Lei P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med. Res. Rev. 2022;42:259–305. doi: 10.1002/med.21817.

Peng L., Hu G., Yao Q., Wu J., He Z., Law B.Y.-K., Hu G., Zhou X., Du J., Wu A. Microglia autophagy in ischemic stroke: A double-edged sword. Front. Immunol. 2022;13:6825. doi: 10.3389/fimmu.2022.1013311.

Diana Amantea, Giacinto Bagetta, Excitatory and inhibitory amino acid neurotransmitters in stroke: from neurotoxicity to ischemic tolerance, Current Opinion in Pharmacology, Volume 35, 2017, Pages 111-119, ISSN 1471-4892, https://doi.org/10.1016/j.coph.2017.07.014.

Chisato Nagata, Keiko Wada, Takashi Tamura, Toshiaki Kawachi, Kie Konishi, Michiko Tsuji, Kozue Nakamura, Dietary Intakes of Glutamic Acid and Glycine Are Associated with Stroke Mortality in Japanese Adults1,2, The Journal of Nutrition, Volume 145, Issue 4, 2015, Pages 720-728, ISSN 0022-3166, https://doi.org/10.3945/jn.114.201293.

Yong Hao, Shuwei Bai, Jing Peng, Ronghua Hong, Jie Ding, Zezhi Li, Yangtai Guan, TRIM27-mediated ubiquitination of PPARγ promotes glutamate-induced cell apoptosis and inflammation, Experimental Cell Research, Volume 400, Issue 1, 2021, 112437, ISSN 0014-4827, https://doi.org/10.1016/j.yexcr.2020.112437.

Araki T, Kato H, Shuto K, Fujiwara T, Kogure K, Itoyama Y. Effects of cerebral ischemia on dopamine receptors in the gerbil striatum. Eur J Pharmacol (1996) 306(1-3):73–9. doi: 10.1016/0014-2999(96)00227-0

Stanfill A, Elijovich L, Baughman B, Conley Y. A Review and Conceptual Model of Dopaminergic Contributions to Poststroke Depression. J Neurosci Nurs. 2016 Oct;48(5):242-6. doi: 10.1097/JNN.0000000000000240. PMID: 27579957; PMCID: PMC5010006.

Hashimoto N., Matsumoto T., Mabe H., Hashitani T., Nishino H. (1994). Dopamine has inhibitory and accelerating effects on ischemia-induced neuronal cell damage in the rat striatum. Brain Res. Bull. 33, 281–288. 10.1016/0361-9230(94)90195-3

Toner C. C., Stamford J. A. (1996). 'Real time' measurement of dopamine release in an in vitro model of neostriatal ischaemia. J. Neurosci. Methods 67, 133–140.

Weinberger J. (2002). The role of dopamine in cerebral ischemic damage: a review of studies with Gerald Cohen. Parkinsonism Relat. Disord. 8, 413–416. 10.1016/S1353-8020(02)00023-8

Delbarre B., Delbarre G., Calinon F. (1992). Free radicals and neurotransmitters in gerbil brain. Influence of age and ischemia reperfusion insult. EXS 62, 199–212. 10.1007/978-3-0348-7460-1_20

Yulug B., Yildiz A., Guzel O., Kilic E., Schabitz W. R., Kilic E. (2006a). Risperidone attenuates brain damage after focal cerebral ischemia in vivo. Brain Res. Bull. 69, 656–659. 10.1016/j.brainresbull.2006.03.017

Globus, M.Y.-T., et al., Direct evidence for acute and massive norepinephrine release in the hippocampus during transient ischemia. Journal of Cerebral Blood Flow & Metabolism, 1989. 9(6): p. 892-896.

Nellgård, B., et al., Pre-ischemic depletion of brain norepinephrine decreases infarct size in normothermic rats exposed to transient focal cerebral ischemia. Neuroscience letters, 1999. 275(3): p. 167-170.

Chen, M.J. and A.A. Russo-Neustadt, Nitric oxide signaling participates in norepinephrine-induced activity of neuronal intracellular survival pathways. Life sciences, 2007. 81(16): p. 1280-1290.

Jolkkonen, J., et al., Behavioral effects of the α2-adrenoceptor antagonist, atipamezole, after focal cerebral ischemia in rats. European journal of pharmacology, 2000. 400(2-3): p. 211-219.

Globus, M., et al., Ischemia-induced extracellular release of serotonin plays a role in CA1 neuronal cell death in rats. Stroke, 1992. 23(11): p. 1595-1601.

Fujikura, H., et al., A serotonin S2 antagonist, naftidrofuryl, exhibited a protective effect on ischemic neuronal damage in the gerbil. Brain research, 1989. 494(2): p. 387-390.

Gałecki, P., J. Mossakowska-Wójcik, and M. Talarowska, The antiinflammatory mechanism of antidepressants–SSRIs, SNRIs. Progress in NeuroPsychopharmacology and Biological Psychiatry, 2018. 80: p. 291-294.

Wang W, Ji P, Dow KE. Corticotropin-releasing hormone induces proliferation and TNF-alpha release in cultured rat microglia via MAP kinase signalling pathways. J Neurochem. 2003;84(1):189-195.

Grammatopoulos DK, Randeva HS, Levine MA, Kanellopoulou KA, Hillhouse EW. Rat cerebral cortex corticotropin-releasing hormone receptors: evidence for receptor coupling to multiple Gproteins. J Neurochem. 2001;76:509-519.

Wu Q, Feng Y, Liu L, Liu Y, Liu X, Zhang L, Li Y, Wang L. Corticotropin-Releasing Factor Aggravates Ischemic Stroke Injury by the

Inflammatory Activation of Microglia. Endocrinology. 2022 Mar 1;163(3):bqac013. doi: 10.1210/endocr/bqac013. PMID: 35137012.

M. Polshekan, V. Khori, A.M. Alizadeh, M. Ghayour-Mobarhan, M. Saeidi, Y. Jand, M. Rajaei, G. Farnoosh, K. Jamialahmadi The SAFE

pathway is involved in the postconditioning mechanism of oxytocin in isolated rat heart Peptides, 111 (2019), pp. 142-151,

1016/j.peptides.2018.04.002

W. Xiong, M. Yao, R. Zhou, Y. Qu, Y. Yang, Z. Wang, N. Song, H. Chen, J. Qian Oxytocin ameliorates ischemia/reperfusion-induced injury by inhibiting mast cell degranulation and inflammation in the rat heart Biomed. Pharm., 128 (2020), Article 110358,

1016/j.biopha.2020.110358

Fan XY, Shi G, Zhao YP, Yang JJ, Feng J. Neuroprotective effects of oxytocin against ischemic stroke in rats by blocking glutamate release and CREB-mediated DNA hypermethylation. Biomed Pharmacother. 2023 Nov;167:115520. doi: 10.1016/j.biopha.2023.115520. Epub 2023 Sep 18. PMID: 37729734.

S. Momenabadi, A.A. Vafaei, A.R. Bandegi, M. Zahedi-Khorasani, Z. Mazaheri, A. Vakili Oxytocin reduces brain injury and maintains blood brain barrier integrity after ischemic stroke in mice Neuromolecular Med., 22 (2020), pp. 557-571, 10.1007/s12017-020-08613-3

Wallaschofski H, Kobsar A, Koksch M, et al. Prolactin receptor signaling during platelet activation. Horm Metab Res 2003; 35: 228–35.

Wallaschofski H, Lohmann T, Hild E, Kobsar A, Siegemund A, Spilcke-Liss E, Hentschel B, Stumpf C, Daniel WG, Garlichs CD, Eigenthaler M. Enhanced platelet activation by prolactin in patients with ischemic stroke. Thromb Haemost. 2006 Jul;96(1):38-44. doi: 10.1160/TH05-09 0634. PMID: 16807649.

J. Gonçalves-Ribeiro, C.C. Pina, A.M. Sebastião, S.H. Vaz Glutamate transporters in hippocampal LTD/LTP: not just prevention of

excitotoxicity Front. Cell. Neurosci., 13 (2019), p. 357

Загрузки

Опубликован

2024-08-20