НАРУШЕНИЕ УГЛЕВОДНОГО ОБМЕНА У БОЛЬНЫХ НА ФОНЕ ПЕРЕНЕСЕННОГО COVID-19

Авторы

  • Рахимова Г.Н
  • Наримова Г.Д
  • Тилляшайхова И.М

Ключевые слова:

COVID-19, SARSCoV-2, сахарный диабет, ангиотензинпревращающий фермент 2.

Аннотация

распространяться по всему миру. Зарегистрировано примерно 590 миллионов подтвержденных случаев и 6,44 миллионов смертей на сегодняшний день. Ведутся интенсивные работы по борьбе с этим заболеванием путем подавления вирусной передачи, понимания его патогенеза, развитие вакцинопрофилактики, развитие стратегии и определение эффективных терапевтических целей.  У лиц с ранее диагностированным диабетом отмечается более тяжелое течение COVID-19 и неблагоприятный прогноз на фоне коронавирусной инфекции.   Кроме того, высокая частота диабета, а также вновь зарегистрированные случаи сахарного диабета наблюдались у пациентов после постановки диагноза COVID-19. COVID-19 может повышать риск гипергликемии и других осложнений у пациентов и без предшествующего диагностированного  диабета.   Также известно, что выздоравливающие пациенты с COVID-19 имеют более высокий риск развития впервые выявленного диабета или его осложнений.  Цель этого обзора - подвести итоги, что в настоящее время известно об эпидемиологии и механизмах   двунаправленной связи между COVID-19 и диабетом.

Библиографические ссылки

Accili D. Can COVID-19 cause diabetes?// Nat Metab.-2021.-Vol 3(2).-p.123–125.

Al-Sabah S, Al-Haddad M, Al-Youha S, Jamal M, Almazeedi S.// COVID-19: impact of obesity and diabetes on disease severity.// Clin Obes.- 2020.-Vol.10:e12414.

Apicella M, Campopiano MC, Mantuano M, Mazoni L, Coppelli A, Del Prato S. COVID-19 in people with diabetes: understanding the reasons forworse outcomes.// Lancet Diabetes Endocrinol.- 2020.-Vol.8.-p.782–792.

Barberis E, Timo S, Amede E, et al. Large-scale plasma analysis revealed new mechanisms and molecules associated with the host response to SARSCoV.//Int J Mol Sci.- 2020.-Vol.21.-p.1–25.

Barbu MG, Thompson RJ, Thompson DC, Cretoiu D, Suciu N. The impact of SARS-CoV-2 on the most common comorbidities-a retrospective study on 814 COVID-19 deaths in Romania.// Front Med (Lausanne).- 2020.-Vol.7:567199.

Barron E, Bahia C, Kar P, et al. Associations of type 1 and type 2 diabetes with COVID-19-related mortality in England: a whole-population study.// Lancet Diabetes Endocrinol. -2020.-Vol.8.-p.813–822.

Beger HG, Buchler M, Kozarek R, Lerch M, Neoptolemos JP, Warshaw A, Whitcomb D, Shiratori K The pancreas:an integrated textbook of basic science, medicine, and surgery. //Wiley.-2009.

Bindom SM, Hans CP, Xia H, Boulares AH, Lazartigues E. Angiotensin I—converting enzyme type 2 (ACE2) gene therapy improves glycemic control in diabetic mice.// Diabetes.- 2010.-Vol.59.-p.2540–2548.

Cao X COVID-19: immunopathology and its implications for therapy.// Nat Rev Immunol. -2020.-Vol. 20-p.269

Dhan Bahadur Shrestha, Pravash Budhathoki, Sumit Raut, Sugat Adhikari, Prinska Ghimire, Sabin Thapaliya, Ali A Rabaan, Bibodh Jung Karki. New-onset diabetes in COVID-19 and clinical outcomes: A systematic review and meta-analysis.// World J Virol.-2021.-Vol.10(5).-p.275-287.

Donath MY, Ehses JA, Maedler K, Schumann DM, Ellingsgaard H, Eppler E, Reinecke M . Mechanisms of β-cell death in type 2 diabetes.// Diabetes.- 2005.-Vol.54:p.108–113.

Erener S. Diabetes, infection risk and COVID-19.// Mol Metab.-2020.- Vol.39:101044

Evans JL, Goldfine ID, Maddux BA, Grodsky GM Are oxidative stress—activated signaling pathways mediators of insulin resistance and β-cell dysfunction?// Diabetes.- 2003. – Vol.52.-p.1–8.

Fernandez-Real J-M, Lopez-Bermejo A, Vendrell J, Ferri M-J, Recasens M, Ricart W. Burden of infection and insulin resistance in healthy middle-aged men.// Diabetes Care.-2006.- Vol.29. –p.1058–1064.

Ferraro A, Socci C, Stabilini A, Valle A, Monti P, Piemonti L, Nano R, Olek S, Maffi P, Scavini M . Expansion of Th17 cells and functional defects in T regulatory cells are key features of the pancreatic lymph nodes in patients with type 1 diabetes.// Diabetes. -2011.-Vol.60. – p.2903–2913.

Gheblawi M, Wang K, Viveiros A, Nguyen Q, Zhong J-C, Turner AJ, Raizada MK, Grant MB, Oudit GY. Angiotensin converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system.// Circ Res.- 2020.- Vol.126.-p.1456.

Ginsberg HN (2000) Insulin resistance and cardiovascular disease.// J Clin Invest.- 2000. – Vol.106. –p.453–458.

Heller R, Linscheid P, Bouwman M, Ackermann MHyperglycaemia but not hyperlipidaemia causes beta cell dysfunction and beta cell loss in the domestic cat.// Diabetologia.- 2009.- Vol.52. –p.336.

Hikmet F, M_ear L, Edvinsson Å, Micke P, Uhl_en M, Lindskog C. The protein expression profile of ACE2 in human tissues.// Mol Syst Biol.- 2020.-Vol.16:e9610.

Huang, Y.; Yang, C.; Xu, X.F.; Xu,W.; Liu, S. wen Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19.// Acta Pharmacol. Sin. -2020.-Vol.41.-p.1141–1149

Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.// Lancet.- 2020.-Vol. 395.-p.497–506.

Ibrahim S, Monaco GSF; S I. Not so sweet and simple: impacts of SARSCoV- 2 on the b cell.// Islets. – 2021.-Vol.13.-p.66–79.

Li H, Tian S, Chen T, et al. Newly diagnosed diabetes is associated with a higher risk of mortality than known diabetes in hospitalized patients with COVID-19.// Diabetes Obes Metab.- 2020.- Vol.22.- p.1897–1906.

Li J,Wang X, Chen J, Zuo X, Zhang H, Deng A. COVID-19 infection may cause ketosis and ketoacidosis.// Diabetes Obes Metab.- 2020.-Vol.22. –p.1935–1941.

Lim S, Bae JH, Kwon HS, Nauck MA. COVID-19 and diabetes mellitus: from pathophysiology to clinical management.// Nat Rev Endocrinol. – 2021.- Vol.17. –p.11-30.

Lu C-L, Wang Y, Yuan L, Li Y, Li X-Y. The angiotensinconverting enzyme 2/angiotensin (1–7)/Mas axis protects the function of pancreatic β cells by improving the function of islet microvascular endothelial cells.// Int J Mol Med.- 2014.- Vol.34 (5). –p.1293–1300.

Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding.// Lancet.- 2020.-Vol. 395-p. 565–574.

Manna P, Jain SK. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies.// Metab Syndr Relat Disord. -2015.-Vol.13. - p.423–444.

McGonagle D, Sharif K, O’Regan A, Bridgewood C the role of cytokines including interleukin-6 in COVID-19 induced pneumonia and macrophage activation syndrome-like disease. //Autoimmun Rev. – 2020. – Vol.19 (6): 102537.

Niu M-J, Yang J-K, Lin S-S, Ji X-J, Guo L-M. Loss of angiotensin-converting enzyme 2 leads to impaired glucose homeostasis in mice.// Endocrine.-2008.-Vol.34. –p.56–61.

Olivares-Reyes JA, Arellano-Plancarte A, Castillo-Hernandez J. Angiotensin II and the development of insulin resistance: implications for diabetes.// Mol Cell Endocrinol. -2009. –Vol. 302. –p.128–139.

Petrilli CM, Jones SA, Yang J, et al. Factors associated with hospital admission and

critical illness among 5279 people with coronavirus disease 2019 in New York City: prospective cohort study. //BMJ.- 2020.- Vol.369:m1966.

Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, Xie C, Ma K, Shang K, Wang W

Dysregulation of immune response in patients with COVID-19 in Wuhan, China. //Clin Infect Dis. -2020.-Vol.71 (15). – p.762-768.

Rawla P, Bandaru SS, Vellipuram AR. Review of infectious etiology of acute pancreatitis.// Gastroenterol Res. - 2017.- Vol.10. – p.153–158.

Reinert-Hartwall L, Honkanen J, Salo HM, Nieminen JK, Luopajarvi K, Harkonen T, Veijola R, Simell O, Ilonen J, Peet A.Th1/Th17 plasticity is a marker of advanced β cell autoimmunity and impaired glucose tolerance in humans.// J Immunol.- 2015. -Vol. 194. P.68–75.

Ren H, Yang Y, Wang F, Yan Y, Shi X, Dong K, Yu X, Zhang S. Association of the insulin resistance marker TyG index with the severity and mortality of COVID-19. //Cardiovasc Diabetol. - 2020.-Vol. 19.- p.1–8.

Romero, A., San Hipólito-Luengo, Á, Villalobos, L. A., Vallejo, S., Valencia, I.,Michalska, P., et al. The angiotensin-(1-7)/Mas receptor axis protects from endothelial cell senescence via klotho and Nrf2 activation.// Anging Cell. - 2019.- Vol18:e12913.

5. Rubino F, Amiel SA, Zimmet P, et al. New-onset diabetes in Covid-19.// NEngl J Med. - 2020.- Vol.383.- p.789–790.

Santos, R. A. S., Sampaio, W. O., Alzamora, A. C., Motta-Santos, D., Alenina, N.,Bader, M., et al. The ACE2/Angiotensin-(1–7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1–7). // Physiol. Rev.-2018.- Vol. 98- p.505–553.

Selvin E, Juraschek SP. Diabetes epidemiology in the COVID-19 pandemic.// Diabetes Care.- 2020.- Vol.43. – p.1690–1694.

Shi Q, Zhang X, Jiang F, et al. Clinical characteristics and risk factors for mortality of COVID-19 patients with diabetes in Wuhan, China: a two-center, retrospective study.// Diabetes Care.- 2020.- Vol.43.-p.1382–1391.

Singh AK, Gupta R, Ghosh A, Misra A. Diabetes in COVID-19: prevalence, pathophysiology, prognosis and practical considerations.// Diabetes Metab Snyder. - 2020.- Vol. 14.-p.303–310.

Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance.// J Clin Investig.-2006- Vol.116. – p.1793–1801.

Shoemaker R, Yiannikouris F, Thatcher S, Cassis L. ACE2 deficiency reduces β-cell mass and impairs β-cell proliferation in obese C57BL/6 mice.// Am J Physiol Endocrinol Metab. – 2015.- Vol. 309:E621–E631.

46. Tay MZ, Poh CM, R_enia L, MacAry PA, Ng LFP. The trinity of COVID-19:immunity, inflammation and intervention.// Nat Rev Immunol. - 2020. – Vol.20. –p.363–374

Tojieva I, Alieva A, Feruza K, Berdikulova D, Alimova N. Structure of mortality among patients with diabetes mellitus in the republic of Uzbekistan during COVID-19 pandemia. //Diabetes research and clinical practice. -2022.- Vol.186:109312.

Villalobos, L. A., San Hipólito-Luengo, Á, Ramos-González, M., Cercas, E., Vallejo, S., Romero, A., et al. (2016). The Angiotensin-(1-7)/Mas Axis Counteracts Angiotensin II-Dependent and -Independent Pro-inflammatory Signaling in Human Vascular Smooth Muscle Cells. Front. Pharmacol.- 2016. - Vol. 7.- p.482.

Walker LS, von Herrath M. CD4 T cell differentiation in type 1 diabetes.// Clin Exp Immunol.- 2016- Vol.183. – p.16–29.

Wang S, Ma P, Zhang S, et al. Fasting blood glucose at admission is an independent predictor for 28-day mortality in patients with COVID-19 without previous diagnosis of diabetes: a multi-centre retrospective study.// Diabetologia. – 2020 – Vol. 63. –p.2102–2111.

WHO. WHO Coronavirus Disease (COVID-19) Dashboard. [cited 8 August 2022].

Available from: https://covid19.who.int/

Wang J, Liu R, Qi H, Wang Y, Cui L, Wen Y, Li H, Yin C. The ACE2-angiotensin-(1–7)-Mas axis protects against pancreatic cell damage in cell culture. //Pancreas .- 2015. –Vol.44. – p.266–272.

Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, Basham B, Smith K, Chen T, Morel F. Development, cytokine profile and function of human interleukin 17-producing helper T cells.//Nat Immunol.- 2007.- Vol.8 – p.950–957.

Wu D, Yang XO. TH17 responses in cytokine storm of COVID-19: an emerging target of JAK2 inhibitor Fedratinib.// J Microbiol Immunol Infect. - 2020. – Vol.53. p.368.

Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreakin China: Summary of a Report of 72314 сases from the Chinese Center for Disease Control and Prevention.// JAMA.- 2020.- Vol. 323. –p.1239–1242.

Yang JK, Jin JM, Liu S, et al. New onset COVID-19–related diabetes: an indicator of mortality. Med Rxiv. 2020 [preprint]. DOI: 0.1101/2020.04.08.20058040.

Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. J Infect.- 2020.- Vol. 80. P.607-609.

Zhou MS, Schulman IH, Zeng Q. Link between the reninangiotensin system and insulin resistance: implications for cardiovascular disease. //Vasc Med. – 2012.- Vol.17. - p.330–341.

Загрузки

Опубликован

2022-12-24